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The uplink format:

The uplink is a sequence of Communications Link Transmission
Units (CLTUSs), possibly with idle between:

‘ CLTU ‘ CLTU ‘ idle ‘ CLTU

TC/TM ranging operates by tracking the number of symbols
(integer and fractional) that have elapsed since the beginning of
the most recently received CLTU. We call this symbol count the
TC code phase.

Telecommand/telemetry ranging concept of operation:

2. Spacecraft

continuously tracks , 3. Spacecraft transmits telemetry
TC code phase and :
FSN. },\@\ 4. At instant a telemetry frame

begins, the TC code phase
(integer and fraction) and FSN
. is latched. These values are
1. Ground station included in later telemetry

transmits transmission.
telecommand,

noting the Frame "
Sequence Number

5. Ground station notes time of
beginning of received telemetry

Data flow:

A CLTU or idle sequence is sent on uplink,
according to PLOP2 protocol; as it is transmitted,
its TC code phase is periodically recorded and
time-tagged on the ground, along with the FSN of
the first TC frame withineach CLTU.

The spacecraft continuously tracks the TC code
phase of the acquired uplink CLTU/idle signal. The
TC code phase shall be recorded as a 40 bit
number, representing the number of symbols times
22° rounded to an integer, and stored in five
octets, with bit 0 being the MSB and bit 39 being
the LSB. Atthe momentwhen a telemetry frame
with Frame Count FC is transmitted, the TC code
phase shall be latched.

The (TC code phase, FC, FSN) triplet is
transmitted to the ground as telemetry.

Range is computed from the known uplink
frequency tuning history, ground TC code phase
time-tag and FSN log, earth-receive time of
telemetry frame FC, and (TC code phase, FC,
FSN) triplet recorded by the spacecraft. The range

(FSN) and TC : p ot . computation algorithm remains nearly unchanged
rame, ana associates spacecrart- . .
code phase. latched TC code phase and FSN from telemetry ranging and PN ranging.
with it.
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The phase-modulated signal received at the spacecraft is modeled in complex exponential form:

s(t)=Re(Aexp{jlot +¢s(t—7)+061}) st—1)=), d,p(t—7) d =+1
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Figure 2. a) I-Q modulated unfiltered BPSK (dashed red), and filtered BPSK (solid red) Q component
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Figure 2. b) phase-modulated filtered BPSK: | (blue) and Q (red).
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N\l

=5(r)+7

Noise and received signal model: n=(n,n,,-,n,) ©=(7,7, 7)) §(1) =[5,(2),5,(2),-+, 5, (7)]

2 2 2 2 2
O-n - Gn,R + O-n,l Gn,R - Jn,l

v N- B _N N- B _
Noise and received signal statistics: p(#)=(7o; ) Y [Texp(-17 P /o?), pE|0)=(70,) []exp(~|7 -5 /o))
i=0 i=0

N-1
Log-likelihood function: A(F|7)=In[ p(F|7)] A(F|7)=—NIn(z aj)—izZ] F—5(r)[

n i=0

Maximum likelihood (ML) estimate of delay, 7: that value of delay, 7, that maximizes A(¥|7).

Expanding the square term and carrying out the maximization, yields:

N-1
A(F|7)=In[ p(F|7)]=-NIn(z o, )——Z\g 5.(r :—Nln(;mj)—izZ{mf+\§i(r) > —2Re[7 5, ()]}
O, i=0 G, i=0
Maximum Likelihood estimate of delay: r=max A(F|7) = mTaXZRe[f,- 5 ()]
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The Cramer-Rao lower bound (CRB) establishes the minimum error variance for any unbiased estimate

The CRB is based on the log-likelihood function. It can be expressed in two equivalent forms:

2 -1 2 -1
Var(Tf)Z(E{‘aA(I’T) H Var(r—f)Z[EaA(—l]T)j
loks ot
preferred for delay estimation leads to complicated math

Taking the first derivative of the log-likelihood function, making the substitution 7. —5.(z) =7, , squaring
and taking the expectation of the random terms, yields:

0 1 &0 . 2 & . os(r) 28 .05(r
—A(r|r)——— — |7 =5 == [ =5(2)] ( )——2 n, 0)
Gn i=0 0 O, i=0 ot O, i=0 or
o o4 (s 4] LWes o) as.(r) B,(0)| 4 Elasof
Ed|l—A(r|r =—F n———= r=——-o + E d / =—
{8 ()} o {,ZO’ or ol ”; ot ,ZZ e or Ot G,fzo: o
P ) 1165, (r)
CRB for delay estimation: Var(r—r')>[E“a—A(r|z') H = ( J
T i=0
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Delay estimator performance in high, medium, and low SNR regions

° Demod-remod process generates error'free L High—SNR correlatior\\ functvion - 10So;_lb—sample delay-estimate via interpolation
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. Medium-SNR correlation function peak Sub-sample delay-estimate via interpolation
° g . 1.08
Performance of ML delay estimator for rand.om W I |- F e
data, with known demod-remod reference, is o] . ) e sub-sample estimate
identical to that of ML estimator for PN codes . A | F =

\

/ /'r\ \ 0.98 - occasional
ossr /0 \ ’ sample-errors
0.86 / / \\ 0.96 1

. ) . L [/ \ \ J L Peak | J
demod-remod delay estimator correlation functions o8 ‘ / - \ oot /%fu
0.82 [ / 4 002 L X . N J

§ . [fitered 0QPSK modulation /\ ] oo ok s r - e s
5 /) Figure 6. Correlation functions and fine delay estimates in the mid-SNR region
g delayed signal reference signal
s 0.5 cross-correlation auto-correlation Low-SNR correlation function Sub-sample delay-estimate via interpolation
E 1+ reference ) " A=13
th o8| signal corr. ‘,‘t\‘ » n f\,\ f samples
8 ! 08 " / ‘W \ ~ 16 Joomed test delay |
5.6 5.65 5.7 5.75 5.8 5.85 5.9 5.95 '/ N~ M« W () ;,W | J\)‘ h I o B
samples, x10* A h . val o ,\ |
. . . . :zj ‘ ‘ J ‘rm w x * v Large sample-errors % T T’
Figure 4. Filtered OQPSK auto-correlation function (blue) and o deiovedsicnal w1 . 0 1
. . .0.8 | cross-correlation | 2 |
cross-correlation function (red) at a sample-SNR of 15 dB; ;
delay of 53 samples. samples samples

Figure 7. Correlation functions and fine delay estimates in the low-SNR region
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e ML delay estimator performance was determined for * Windowing at transitions shown to improve delay
both BPSK and OQPSK signals estimator performance
best suited for low data-rate telemetry
L. ., Performance of demod-remod delay estimator . . . . Windowed demod-remod delay estimator |
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5 5
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Figure 8. Comparison of ML delay estimator performance for Figure 9. Improved delay estimator performance via windowing:
unfiltered BPSK and OQPSK signals, with 1Q modulation. unfiltered BPSK and OQPSK; I-Q modulation applied.
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Theoretical performance of end-to-end ranging derived via
Cramer-Rao bounds, and validated via MATLAB simulation

Telemetry/Telecommand based ranging was shown to
achieve same performance as PN-code based ranging
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% [ s 10°¢ * N=total number of samples E
> : o i
T 402 -
[) F o) B~
2 [ S L0k T~
o E “6 10 ;\ ~ - ~ - © —§
é 10-4§ _é \Q\O:i\(; 2\&\0\ K =100 simulations
S [ % 0w ~a © K _ 10 E
S 6 S 102 Ome /% o K=
100 - ° oL Yo D e/\o\ ]
° : S CRB,, = o2,/ NP ~a. ™ © ]
S I c ’ O~ o &
= N L >l
'.CF)' 10_8 ;7 2 \\\\ *; 10 3 o "o ©
: ol = W’B, F pONG a O ° )
‘2R (PIN,) ] O~ oo
: R =PT./N, E E ~9
10—10 L | | 1 | L | L 1 ! 10.6 L I 1 1 1 1 1 1 1 ! 1
-30 -20 -10 0] 10 20 30 40 50 60 70 -50 -40 -30 -20 -10 0 10 20 30 40 50
symbol SNR, dB sample SNR, dB
Figure 10. End-to-end rms delay error with OQPSK symbols as a Figure 11. Comparison of demod-remod processing with
function of symbol-SNR and using 1 m = . A
unction of symbol-SNR and using 100 sa . ples/symbol, for K =1, 10 random BPSK data (10 samples/symbol), and the high-SNR
and 100 LDPC codewords per CLTU: uplink CRB (dashed black); CRB for PN-coded chips in sample-SNR dB
downlink DTTL low-SNR squaring loss bound (dashed blue); )
end-to-end performance bound (solid red); simulation (red asterisks)
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Summary and Conclusions

* Investigated delay and range estimation performance of two-way Deep-Space links

 Demod-remod process was utilized to generate error-free reference on future spacecraft
* Maximum likelihood algorithm for delay estimation with known reference was derived
* Cramer-Rao bounds on delay estimation error derived, compared to simulation results
* Developed pre-correlation windowing approach for up to 10 dB gain at low data-rates

* Less than 1m range error was demonstrated via analysis simulation, using realistic CLTUs
with 100 or more LDPC codewords containing 512 symbols each
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